Classical Feedback Control, Answers to the Problems 

(for Instructors)



Chapter 1                   (24)

  1	(b) pump is the actuator, chamber is the plant, pressure gauge is the sensor;

	(c)  motor, rotating assembly, Hall effect angle sensor(or an optical angle sensor); (d) lamp, surface, photocell; 

	(e) amplifier, VCO, frequency meter; 

	(f) motor, lens, optical resolution meter; 

	(g) motor, aerodynamic surfaces, panel meters, and feeling in the feet when pressing the pedals.

  2	(a) 20 dB; (b) 26 dB; (c)70 dB; (d) 14 dB; (e) 18 dB; (f) 300,000; (g) 1,400; (h) 2; (I) 8; (j) 30;

  3	(a) 1.01; 0.01; (b) 0.99; -0.01; negligible; (c) 1.1; 0.1; negligible; (d) 0.99; -0,1; positive; (e) 3.72; 0.731; negative; (f) 0.1; -0.9; positive; (g) 11; 0.909, negative;  (h) �9; 1.111; negative; (i) 0.8074; 1.858; positive. 

  4	(a) 99; 0.0001; 0.0101;  (b) 9.9; 0.001; 0.101;  (c) 0.99; 0.01; 1.01; (d) 19.8; 0.505; 0.505;  (e) 0.364; 0.275; 27.5;  (f) 0.33; 0.303; 30.3

  5	(a) 30; 30; 29; (b) 15; 15; 14; (c) 1; 1; 0; (d) 60; 60; 59; (e)1103; 1103; 1102

  6	The closed loop gain will change by: (a) 0.4%; (b) 0.8%; (c) 12%; (d) 0.02%; (e) 0.0109%. The feedback is large in all cases except (c).

  7	(a) 3.05 V; (b) 1.55 V; (c) 0.35 V; (d) 0.15 V; (e) 0.272 V; (f) 1.72 V

  8	Use MATLAB

  9	Use MATLAB

10	Use MATLAB

11	Use MATLAB

12	Use MATLAB

13	F(s) = (s3 + 55s2 + 250s + 5000)/(s3 + 55s2 + 250s); 

	M(s) = 5000/(s3 + 55s2 + 250s + 5000)

14	F (1;  M (T .

15	Use MATLAB

16	Use MATLAB

17	Use MATLAB

18	Use MATLAB

19	25

20	(a) 0.15%; (b) 0.075%; (c) 0.05%; (d) 0.0375%; (e) 0.055%

21	(a) 0.1 N; (b) 4 mrad

22	100 m/sec

23	(a) –0.001 dB; (b) –0.0001 dB; (c) –0.00001 dB

24	0.00015 dB

25	0.001 dB

26	(a) 0.1%; (b) 0.05%; (c) 0.002%

27	(a) 0.075%; (b) 0.015%; (c) 15%; (d) 30%

28	(a) 0.06o; (b) 0.006o; (c) 0.6o (d) 1.2o

29	Use MATLAB. T = –0.98, |F| = 0.02, |S| = 50. Increasing the gain coefficient by 2% causes the closed gain to be infinite. Increasing the gain by more than 2% causes oscillation.

30	Use MATLAB. Negative feedback reduces the gain at the resonance frequency and makes the passband wider.

31	* Asterisk indicates that the solution was already given.

32	1/3

33	1/3

34	SC = SA = SP .

35	SB = -M .

36	The response is shown in Fig. P1.1. The loop gain corresponds to s-2 plant with 	compensator function 700(s + 1)/[(s + 5)(s2 + 10s + 100)].
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Fig. P1.1   Closed loop gain response



37	Nichols chart relates T to  M = T/(T + 1); therefore, it  also relates 1/T to (1/T)/(1/T + 1) which is 1/F. If phase is of no importance, the plot of |1/T |(argT can be used, i.e. the plot of T turned upside down.

38	(a) 20; (b) 59; (c) 167000; (d) 10; (e) 150

39	Use MATLAB plots.

40	U2 = 5 ( 100RL/(1 + 100BRL), or 5 ( 100 ( 100 ( BRL/(1/100B + RL), where b = 0.5; by comparing this expression with  expression U2 = emf  ( RL/(RS + RL), it is seen that RS = 0.02 W.

41	(a) B = 0.5V/0.1A = 5W; T = 100 A/V ( 5 W = 500; output resistance is 501 times the 	output resistance of the amplifier (which is already large).

	(b) B = 2W; T = 200; output resistance is 201 times the output resistance of the amplifier.

	(c) B = 1W; T = 100; output resistance is 101 times the output resistance of the amplifier.

	(d) B = 1.25W; T = 125; output resistance is 126 times the output resistance of the amplifier.

	(e) B = 0.184W; T = 18.4; output resistance is 19.4 times the output resistance of the amplifier.

	(f) B = 0.758W; T = 75.8; output resistance is 76.8 times the 	output resistance of the amplifier.

42	Use MATLAB

43	Use MATLAB

44	Use MATLAB

45	Use MATLAB

46	At maximum signal, the output is reference ( 1000/1001. At smallest signal, the output is reference ( 10/11. The change in the output signal amplitude is, therefore, approximately 10%.

47	The coordinates are logarithmic.



Chapter 2

  1	(a) 1.2; (b) 1.05; (c) 0.9875; (d) 1.0083; (e) 1.37

  2	(a) C = 0.6; B = 0.833; (b) C = 2.1; B = 0.9524; (c) C = 7.9; B = 1.013;  (d) C = 12.1; B = 0.992;  (e) C = 0.373; B = 0.730;

  3	(a) C = 0.5; FF = 0.1; (b) C = 2; FF = 0.1;(c) C = -8; FF = 0.1;  (d) C = 12; FF = 0.1;  (e) C = 0.272; FF = 0.1;

  4	For the system shown in Fig. P2.1, the input-output transfer function is the following:
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Fig. P2.1. Command feedforwarding

		� EMBED Equation.2  ���

	or

		� EMBED Equation.2  ���.

  5	Without feedforward, input-output gain coefficient is within [0.952, 0.9756] interval (ratio of the limits is 1.025); with feedforward, within [0.984, 1.00813] interval, with the same ratio. As seen from the formula in Section 2.1, the ratio must be the same. Feedforward does not change the sensitivity.

  6	At very low frequencies the feedback is large and performance is good even without the feedforward. At very high frequencies, feeforward is limited. Then, the advanrages of the feedforward show up mostly in the neighborhood of crossover.

  7	Use MATLAB

  8	Use MATLAB

  9	The sensitivity is W1/(W1 + W2); (a) 0.98; (b) 0.5; (c)  –9; (d) s/(s + 10)

10	SP = 1/[1 + (CVAV + CMAM)P;  SAV = SPCVAV/(CVAV + CMAM); 

	SAM = SPCMAM/(CVAV + CMAM)

	Numerical examples can be different.

11	SAM = AM(1 - AEB)/[(AM + AE - AMAEB); The sensitivity for nominal values of the links’ transfer functions is 0; when AE becomes 14.1, the sensitivity becomes 0.41.

12	(a) 0.05; (b)  0.052; (c) 0.073

13	The output signal of the error amplifier is AEAMS(B – 1/AM), then (a) 0; (b) 0.452; (c) 3.16; the large is the deviation of AM from 1/B, the larger must be the available output power of the error amplifier.

14	SE = AE(1 - AMB)/[(AM + AE - AMAEB)FE

15	(a) 1; (b) 3; (c) 2; (d) 2

16	(a) 8%; (b) 2.8 dB; (c) 2.23 dB; (d) 2.5 dB

17	To drive a dissipative load 10 times faster, the motor power needs to be increased 10 times. This makes the motor much bigger. On the other hand, a 10 times faster vernier actuator with the maximum motion amplitude of only 0.05 of the main actuator consumes 0.5 of the main actuator power. Therefore, addition of the vernier actuator will only increase the total  power consumption 1.5 times, and the total size, weight, and cost of the system will be much smaller than when using one powerful and fast motor.

18	The transfer function can be instantly found using Mason’s rule: abc/(1 + abd + bce)

19	(CvAv + CMAM)P/(1 + CVAVP + CMAMP)

20	CDAP/(1 +DBD + CABA + CDAPBP)

21	(a) abcde/[(1 + g)(1 – h)] + af/(1 + g);

	(b) abcde/[(1 + g)(1 + h)] + afde/(1 + h);

	(c) abcde/[(1 + g)(1 – h)] + f;

	(d) abcde/[(1 – g)(1 – h)(1 – m)] + abf/(1 – g);

	(e) abcde/[(1 + g)(1 + h + cdem)] + af/(1 – g);

22	(a)	x (  0.5x( - 0.05y( - 0.075z(

		y (  -0.024x( + 0.476y( - 0.024z(

		z (  -0.010x( - 0.026y( + 0.526z(

	(which is close to the solution obtained by inverting the matrix of coefficients:

		x =  0.5038x( + 0.0443y( + 0.0772z(

		y =  -0.0235x( + 0.4796y( - 0.0215z(

		z =  -0.0094x( - 0.0243y( + 0.5291z( )

		The accuracy of the approximate expressions (even of the first approximation) is sufficient if the decoupling matrix is placed in the forward path. (Often the coupling terms are not that accurate anyway.) The flow-chart is shown in Fig. P2. 2.
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Fig. P2.2   Decoupling matrix flowchart



			The commands are in terms of x, y, z if the decoupling matrix is placed in the feedback path, and in terms of x’, y’, z’ if the matrix is in the forward  path.

	(b), (c),	(d), (e) Use MATLAB to invert the matrices.

23	The range due to temperature variations is 10–5 Hz, and due to voltage variations,   0.5(10–5 Hz, so the total range is 1.5(10–5 Hz.

24	Since W = (aw + b)/(cw + d), the sensitivity of W to w is S = (w/W)(dW/dw) = w(ad - cb)/(aw + b), and if  S = 0, then  ad = cb, and W = b/d, i.e. W does not depend on w.



Chapter 3

  1	1 - exp(-atr) = 0.9; exp(-atr) = 0.1; expatr = 10; atr = ln10; tr = 2.3/2pfp = 1/(3fp).

  2	(a) 0.0667 (b) 6,67 msec (c) 167 (d) 0.333 nsec (e) 0.333 psec.

  3	*

  4	(a) 0; (b) –6 dB/oct, –20 dB/dec; (c) –12 dB/oct, –40 dB/dec

  5	(a)–6 dB/oct, –20 dB/dec; (b) –12 dB/oct, –40 dB/dec

  6	Use MATLAB

  7	Use, for example, programs for RC filter design available free of charge from Burr-Brown Corp.

  8	(a) 7.3 dB; (b) 4.4 dB; (c) 2.3 dB; (d) 0.7 dB.

  9	*

10	Comments: This is one of the cases when human intuition fails (the Barkhausen criterion which fails is based on the intuitive approach). Certainly, this is not the reason for outright ruling off using intuition and approximate reasoning. However, this case is important for pointing out that exact methods still need to be developed: Nyquist stable systems can be designed rendering higher performance than those satisfying Barkhausen criterion.

			The rigorous analysis must rely on the solutions to linear differential equations which are composed of exponents Aexp(st). In a linear system, self-oscillation takes place only when for at least one of the exponents, Re s > 0. In other words, a zero of the characteristic polynomial, i.e. of the main determinant D, i.e. a pole of any transfer function Do/D , where Do is an appropriate minor, must be in the right half plane.

11	Assume the loop includes an extra link with gain coefficient k. When k is small, system is stable and the Nyquist diagram is not enclosing the critical point. Let increase k gradually toward 1. When a pole crosses jw axis and goes into right half-plane of s, Nyquist diagram crosses critical point and encloses the critical point. This happen to each such pole crossing. Therefore, the number of critical point encirclements equals the number of the poles in the right half-plane.

12		Right half-plane maps onto inside of the Nyquist diagram. The zeros of F(s) all map onto point -1 on the T-plane.

13	The system is unstable, it has four poles in the right half-plane

14	Use SPICE

15	The easy way to verify the system stability is to make a cross-section at the input to the gain-block 10, now 5, that will disconnect all loops. The return ratio for this cros-section is

			� EMBED Equation.2  ���,

	the negative sign coming from the absence of signal inversion in the command summer. 

	The Bode (or the L-plane Nyquist) diagram for this function plotted by MATLAB will show that the system is stable.

16	The loop is easier to open at the cross-section after the third summer, at the variable t (although no such variable can be measured in the physical system). The return ratio is

			� EMBED Equation.2  ���,

	or

			� EMBED Equation.2  ���.

		The cross-sectioned system is stable since all the links are stable and no feedback loop remains closed. From the loop response plotted in Fig. P3.1 it follows that the closed loop system is also stable.

�



Fig. P3.1   Bode diagram at the torque cross-section

   for the system shown in Fig. 3.48.



17	The function maps the right half-plane of s onto the semidisc in the right half-plane of the function. Therefore, the function is p.r.

18	(a) and (b)

19	In real systems, both negative and positive feedback are present. It might happen that it was only meant that the feedback summer sign is plus.

20	(a) –3.6 dB/oct, –54o; (b) – 9.6 dB/oct, –144o; (c) –1.2 dB/oct, –18o; (d) – 4.8 dB/oct, –72o; (e) –16.2 dB/oct, –243o

21	The guard-point phase stability margin is approximately 45o, the guard-point gain stability margin is ( dB. The feedback at the crossover frequency is positive.

22	 (a) –135o (b) –180o (c) –120o (d) –135o.

23	(a) 6 dB/oct, or 20 dB/dec (b) 2.67 dB/oct or 8.9 dB/dec (c) -10 dB/oct or 33 dB/dec  (d) 14 dB/oct or  47 dB/dec.

24	See the plot Fig. 3.34. 

	(a) 110o at the center, 63o at the ends; 

	(b) 46o at the center, 32o at the ends; 

	(c) 106o at the center, 62o at the ends; 

	(d) 215o at the center, 122o at the ends; 

	(e) 33o at the enter, 25o at the ends.

25	The Nyquist diagrams are exemplified in Fig. P3.2.
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	(a)	(b)

	Fig. P3.2   Examples of Nyquist diagrams for 	Fig. P3.3   Nyquist diagram

		the systems having (a) a pole on jw-axis and 	on the L-plane for a 

			(b) a triple integrator in the loop	Nyquist-stable system



26	*

27	(a)*  (b) Bn = 0; (c) Bn = 2[arc tan (0.1w) + arc tan (0.2w)];

	(d) For a pair of complex conjugate zeros –a ( jb, the product [jw – (a + jb)] ( [jw � (a – jb)] = a2 + b2 – w2 – j2aw. Therefore, Bn = 2arc tan [2aw/(a2 + b2 – w2)]; i.e. Bn = 2arc tan[10w/(244 – w2)], where the coefficient 2 came from considering also the related poles in the left half plane of s. (e) Bn = 2arctan(0.1w); (f) Bn = 2arctan(10w); (g) Bn = 2arctan(10w); (h) Bn = 2arc tan[12w/(37.44 – w2)]

	28	The diagram is shown in Fig. P3.3.

	29	The responses are shown in Fig. P3.4.
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Fig. P3.4   Phase responses corresponding to the Bode diagrams Fig. 3.44



30	The responses are shown in Fig. P3.5. The asymptotic approximation and the phase responses for channel (x) are shown in Fig. P3.5. Since the gain responses are similar, phase response for the channel (z) is similar but shifted along the frequency axis.
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Fig. P3.5   Bode diagrams for attitude control loops of a spacecraft



31	(a) The Nyquist diagram for W1/W2 = 1000(s + 2)(s + 5)/[s2(s + 10)(s + 200) ( (s + 500)] encloses the critical point, then, W1 + W2 is n.p.; 

	(b),(c) The Nyquist diagram for W1/W2 does not enclose point -1, W1 + W2 is m.p.



Chapter 4

  1	(a)* 	(b) 45 dB, –135o;  (c) 50 dB, –150o; (d)  60 dB, –180o

  2	(a)*	(b) The frequency fc = 5 kHz; then, fc/fd = 0.6 ( 2 + 1 = 1.3,  fd = 3.8 kHz, fb = 1.9 kHz; (c) fc = 100Hz; then, fc/fd = 1.7,  fd = 58.8 Hz, fb = 29.4 Hz; (d) fc = 50 kHz and Bc = 0,.3 rad; then, fc/fd = 2.7,  fd = 18.5 kHz, fb =9.2 kHz

  3	The system will be unstable since the phase lag at the crossover frequency will be the sum of a half of the phase lag related to the main slope and a half of the phase lag related to the high frequency asymptotic slope, the total exceeding 180o.

  4	 fb = fst/2(20 log Q)/18+2, (a) * ; (b) 10.2 Hz; (c) 9.6 Hz; (d) 8.7 Hz ; (e) 8.1 Hz

  5	Same solutions as for problem 4 but shifted by 0.5 oct up, i.e. all frequencies multiplied by 1.41

  6	Same solutions as for problem 4 but shifted by 0.5 oct down, i.e. all frequencies divided by 1.41

  7	(a)*	(b) Since y = 1/6, the slope is -10 dB/oct. There are 3.32 log(1000/30) = 5.0 oct down to 30 Hz from the crossover. Then, the feedback is 60 dB. 

	(c) The functional feedback bandwidth is 30 Hz as in (b), so the feedback is same, 60 dB.

  8	(a) 10 log2fb/f , i.e. 78.5 dB; (b) 78.5 + 10 = 88.5 dB

  9	fb = 400 Hz, fd = 800 Hz,  fc = 800 ( 20.8 = 1400 Hz.

10	The frequency fd = 200 Hz. From (4.2), the frequency fc is (a) 240 Hz   (b) 360 Hz (c) 480 Hz. The  attenuation at 1.5 kHz is:  (a) 10 + 20 lg(1500/240)2 = 32 dB; (b) 10 + 20 lg(1500/360)3 = 47 dB. The steeper is the asymptotic slope, the better. This is because the weight function drops rapidly with frequency, and the contribution of the slope to the phase at the crossover is smaller when the slope is distanced from the crossover.

11	Bn = 1 rad at (150,000,000,000/1)/(2p) = 24 ( 1012 Hz, so fc = 24 GHz. The relative length of the Bode step is 1.8 so that fd = 13.4 GHz and fb = fd/2 = 6.7 GHz. The available feedback over the bandwidth of 3 GHz is 10 + 10 log2(fb/3) = 21.6 dB. For a twice smaller bandwidth (particularly, from 1.5 to 3 GHz), the available feedback is 10 dB larger, so (b) 31.6 dB; (c) 27.5 dB; (d) 37.5 dB

12	Use Matlab function lp2lp

13	(a) � EMBED Equation.2  ���;

	(b) � EMBED Equation.2  ���;

	(c) � EMBED Equation.2  ���;

	(d) � EMBED Equation.2  ���;

	(e) � EMBED Equation.2  ���.

14	(a) The transform can be made in two steps: first, the transform from the nominal baseband [0,1] to the band [0,40] by replacing s by s/40. Second, the bandpass transform from the band [0,40 to the band [30,70] with the squared central frequency 30 ( 70 = 2100 by replacing s by s + 2100/s.

	(b),(c),(d),(e),(f) similarly, or use MATLAB function lp2lp.

15	The Nyquist diagram is drawn in Fig. P4.1.
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Fig. P4.1   Nyquist diagram of a Nyquist-stable system



16	The asymptotic Bode diagrams for the PID and a response with a Bode step are sketched in Fig. P4.2. It is seen that when the plant has a flexible uncertain mode (case (b)), the system should be gain stabilized at the frequency of the mode, and the loop attenuation at this frequency must be large. Therefore, to increase the feedback bandwidth, the roll-off at high frequencies must be steep. The PID-type response is not as steep as the response with a Bode step, and consequently, the PID feedback bandwidth is much smaller compared with the response with a Bode step. Then, the conclusion that response with Bode step is only by 5  to 10 dB better than the response of PID-type (which is true for the case (a)) cannot be expanded to the case (b), with resonance modes.

         � EMBED Visio.Drawing.3  ���	� EMBED Visio.Drawing.3  ���

		(a)		(b)



		Fig. P4.2   Bode diagrams with bandwidth limited by sensor noise (a) and 

	a resonance mode (b)



17	The phase lag response is calculated in Fig. P4.3.
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Fig. P4.3   Phase response of a Nyquist-stable system



18	At high frequencies, each management level turns out into an integrator increasing the asymptotic slope. Assume all management levels contribute equally and the loop response is optimized before and after the change. Assume next that the nonminimum phase lag in the loop is small. Then, the extra management level will increase the step length from 0.6 ( 4 to 0.6 ( 5, i.e. will reduce fd and the feedback bandwidth by 20%, thus increasing the rise time by 20%. When, however, the nonminimum phase lag (of manufacturing or design) is substantial, the extra management level will not make much difference.

19	(a) fc = 360 Hz;  fd  = 200 Hz; fg  = 42 Hz;  fh = 50 Hz;  (b) fc = 480 Hz; fd  = 200 Hz;  fg = 28 Hz; fh = 50 Hz

20	(a) fc  = 720 kHz;   fd = 400 kHz; fg = 84 kHz; fh = 100 kHz; (b) fc = 960 kHz; fd = 400 kHz; fg = 54 kHz; fh = 100 kHz

21	The simplest way is to neglect B1 over the range where its output signal is 100 times smaller than the signal of the parallel path of the regular loop links since the resulting error in amplitude is only 0.1 dB and in phase, 0.6o. Over the band where this ratio is 10, the error is larger, 0.8 dB and 6o. This error can be also neglected or taken into account by slightly changing the compensator transfer function.

22	To find whether the composite channel is m.p., study W2/W1 (not the inverse function, since the ratio must vanish at high frequencies). The ratio is

		� EMBED Equation.2  ���

	or, using MATLAB command poly (or conv sequentially), 

			� EMBED Equation.2  ��� .

		After plotting this response with 

			num = [1000 140000 4000000]; 

			den = 1 46 759 5690 19400 24000]; 

			bode(num,den)

	we find that the gain is positive at the frequency where the phase is 180o. Therefore, the composite link is n.p.

	(b),(c),(d) similarly, the composite link is n.p.

23	The problem can be solved analytically, by adding links’ transfer functions sequentially and using the analog of the Bode-Nyquist criterion for sequential loop closing, or, much easier, graphically: plot Bode diagrams for W1 and W2, find the frequency at which the gain plots intersect, and find the phase difference between the channels at this frequency. If this difference is less than 180o, the two channel combination is m.p. If not, add a constant k to one of the channels and find the sufficient value for the k in order for the phase difference between the channels be less than 180o.

24	G(s) = s(s + 7)/[(s + 3)(s + 4); this function is realizable since all its poles are in the left half-plane of s.

25	The transfer function of a two-port is a product of the voltage transfer function (without a load, and from a voltage source) and the voltage dividers ratios at the input and the output of the two-port. Since the driving point impedances are passive, they have neither zeros not poles in the right half-plane of s, and so do the dividers functions. Therefore, if the transfer function is n.p. with any passive source and load impedances, it is n.p. with any other passive source and load impedances.



Chapter 5

  1	Use plots in Fig. 5.1

  2	The pole frequency is 10 Hz, the zero frequency is 30 Hz. The diagram becomes more convex. When the pole and zero are interchanged, the diagram becomes more concave.

  3	The asymptotic diagrams are drawn in Fig. P5.1.
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(a)										(b)
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(c)										(d)



Fig. P5.1   Asymptotic Bode diagrams

  4	Use MATLAB

  5	Use alternating real poles and zeros. The solutions can be different.

  6	(a)*  The diagrams for (b),(c),(d), (e), (f), (g) are shown in Fig. P5.2.	
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		(b)	(c)	(d)
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		(e)	(f)	(g)



Fig. P5.2   Asymptotic Bode diagrams for leads



  7	Self-evident asymptotic diagrams. Use MATLAB.

  8	The excessive phase lag area is 10 dB ( dec, the lost feedback is 5.6 dB.

  9		z ( 0.2;   s2 + 120s + 30,000

10	Use MATLAB

11	Use MATLAB

12	Use MATLAB

13	Use MATLAB

14	(b) 100(s + 0.1)/s;  (s + 8)/(s + 20);  (s + 200)/(s + 600) 	

	(c) (s + 1)/s; 1000(s + 2)/(s + 20); 5(s + 1000)/(s + 6000)

	(d) (s + 0.1)/s; 10(s + 8)/(s + 20); 10(s + 200)/(s + 600)

	(e) (s + 1)/s; 5(s + 2)/(s + 20); 1000(s + 1000)/(s + 6000) 

	(f)  (s + 0.1)/s; 10(s + 8)/(s + 20); 10(s + 200)/(s + 600)

15	*

16		*

17	(a) The plant nonminimum phase component is – (s – 40)/(s + 40); this form, with negative sign, provides no phase shift at low frequencies, and as s increases indefinitely, the lag becomes of p. At the crossover frequency w = 3, Bn = 2 arc tan 0.15 = 0.15 rad, or 8o. The plant gain coefficient at zero frequency is 10, and the asymptotic gain coefficient of the plant at s = 1 is 1. The plant asymptotic Bode diagram is shown in Fig. P5.4.

		� EMBED Visio.Drawing.3  ���	�



	   Fig. P5.4   Ideal and asymptotic 	Fig. P5.5   Loop Bode diagrams

		Bode diagrams

		To reduce the noise, the loop Bode diagram must roll down at high frequencies with the slope of �12 dB/oct slope starting with w = 4. Steeper slope would be, generally, desirable, however, it will introduce substantial phase lag and reduce the phase stability margin. But, the phase stability margin must be rather large, more than 40o or else the positive feedback at the crossover frequency will substantially increase the noise. To provide this margin, the slope at frequencies at the crossover and for several octaves below the crossover must be rather shallow, say, – 6 dB/oct (the disturbance rejection will be, therefore, somewhat sacrificed). At much lower frequencies, it is worth making the slope steeper, �12 dB/oct, i.e. designing the system as Type 2 system to improve the steady-state accuracy. The resulting asymptotic Bode diagram for the loop is shown in Fig. P5.4. The loop transfer function is therefore

		� EMBED Equation.2  ���

	where the coefficient 12 is calculated from the condition of the asymptotic value of the return ratio to be 1 at the crossover wb = 3, i.e. (k ( 3 ( 40)/(32 ( 4 ( 40) = 1. The MATLAB Bode plot for this function shown in Fig. P5.5 is plotted by:

		a = [1 0.25]; b = [-1 40]; c = [1 4]; d = [1 40];

		ab = conv(a, b); num = conv(12, ab)

		cd = conv(c, d); den = conv(cd, [1 0 0])

		w = logspace(-1, 1);

		bode(num, den, w)

		The guard-point phase stability margin is: 45o from Fig. P5.5, and -8o of Bn, so the total is 37o. This is acceptable, at least for an initial version. In practice, more versions need to be considered and simulations conducted with detailed analysis of the noise (the noise sources and spectral densities should be specified). As one option, the slope of –6 dB/oct might be extended to w = 6. According to the chart Fig. 3.39, this change will increase the guard-point phase stability margin by 6o (change in slope by 6 dB/oct over 0.5 oct; the effect seen at the frequency 1 oct away from the center of the segment),.

		The compensator transfer function is found as the ratio of the loop transfer function to the plant,

			� EMBED Equation.2  ��� .

	(b) similar solution, but shifted 10 times down in frequency (i.e. replace s by 10s)

	(c) similar solution, but shifted 100 times down in frequency (i.e. replace s by 100s)

18	The answer is, certainly, (5.7). 

19	Due to large dynamic range, rounding errors are noticeable. The algorithms were same in C, but due to different compilers, the algorithms in machine code were not exactly same, and the rounding errors were slightly different. After conversion to the product of appropriate second order functions, the signal dynamic range was reduced, the rounding errors decreased, and the results became identical even when single-precision calculations were used.

20	The poles of the functions of z are: (a) 0.9417, 0.8868, 8519  (b) 0.7857, 0.2500, 0.1111 (c) 0.7699, 0.7241,  0.0811  (d) 0.8182, –0.7143,  –0.8750.

21	The functions of z are: 

	(a)	(1.0238z - 0.8810)/(z - 0.9048), or (1.0238 - 0.8810/z)/(1 - 0.9048/z), 

	(b)	(4.8837z - 4.4186)/(z -0.8605), or (4.8837 - 4.4186/z)/(1 - 0.8605/z), 

	(c)	(0.2557z2 + 0.0568z - 0.1989)/(z 2 -18182z + 0.8182), or 

			(0.2557 + 0.0568/z - 0.1989/z2)/(1 -18182/z + 0.8182/z2),

	(d)	(2.1167z - 1.8833)/(z - 0.3333), or (2.1167 - 1.8833/z)/(1 - 0.3333/z).

	(e)	(0.1286z2 + 0.0429z - 0.0857)/(z2 - 0.5714z - 0.4386), or 

		(0.1286 + 0.0429/z - 0.0857/z2)/(1 - .5714/z - 0.4386/z2),

	(f) (2.15z -1.85)/(z - 1), or (2.15 - 1.85/z)/(1 - 1/z).

22	The functions of s are: 

	(a)	f(s) = 5/(s + 3), 

	(b)	f(s) = 3/(s + 5), 

	(c)	f(s) = 2(s + 10)/(s + 25).

	(d)	f(s) = (-12.52s + 2554)/(s + 29.89), 

	(e)	f(s) = 68/(s + 50), 

	(f)	f(s) = (1.364s + 127.3)/(s + 163.6).

23	(a)	The frequency fd = 2 kHz, fc is approximately 5 kHz, and the digital lag at fc is approximately p/2. More accurately, the Bode step ratio is fc/fd ( [0.6n + Bn(fc)] = 2.25, i.e. the step width is 1.17 oct. The asymptotic loop response with a Bode step against the frequency scale in kHz is shown in Fig. P5.6, plot (a).

				The loop response can be obtained by modifying the response given in Section 5.6, Example 2:

			� EMBED Equation.2  ��� .
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		Fig. P5.6   Asymptotic Bode diagrams   Fig. P5.7   Bode diagrams, freq. in

				krad/sec



			This response has Bode step 0.7 oct wide. To increase the step width to the required 1.17 oct (the ratio of 2.2), the frequency of the poles at w = 3 should be increased 1.35 times to 4.05. Also, the frequency must be properly scaled to shift the crossover frequency from 1 rad/sec to 1 kHz, i.e. s must be replaced by s/(2p ( 1000). We might prefer to use s in krad/sec for the numbers to be easier to manage, and replace s by only s/(2p). The resulting transfer function is

			� EMBED Equation.2  ���.

	The response in Fig. P5.7 is plotted by

			a = [1 2.51]; b = [1 10.05 157.9];

			d = [1 0.6283]; e = [1 12.57]; f = [1 20.36 647.5]; 

			g = [1 0];

			a3948 = conv(a, 3948); num = conv(a3948, b);

			de = conv(d, e); dee = conv(de, e); deef = conv(dee, f);

			den = conv(deef, g);

			w = logspace(-1, 2); bode(num, den)

			We generated the plot with the convenient bode command without telling the program that the frequency is in krad/sec; therefore, the frequency is incorrectly labeled in rad/sec. To label the axis as desired, standard MATLAB plotting routines can be used.

			The digital delay lag is not shown in the phase plot. The lag is pw/wS, i.e. 0.01571w rad, or 0.9w degrees. With this lag added, the response is close to the desired. (Only small adjustments need to be made; particularly, z of the zeros at wd might be worth reducing to increase the phase margin at wb. We will not consider this here.)

			The compensator transfer function

			� EMBED Equation.2  ���

			� EMBED Equation.2  ���.

	can be factored as C1C2C3C4 where

			� EMBED Equation.2  ���,		� EMBED Equation.2  ���,

			� EMBED Equation.2  ���,		� EMBED Equation.2  ���.

		The functions of z found with MATLAB function bilinear

		fs = 6.28; n = [0.0000278]; d = [1 0.628 0];[nd, dd] = bilinear(n, d, fs)

		n = [1 2.51]; d = [1  31.14  242.2]; fs = 6.28;	[nd, dd] = bilinear(n, d, fs)

		n = [1 10.05 157.9]; d = [1  20.36  647.5]; fs = 6.28;	[nd, dd] = bilinear(n, d, fs)

		n = [1 0.3]; d = [1  0.2]; fs = 6.28;	[nd, dd] = bilinear(n, d, fs)

	are:

			� EMBED Equation.2  ���,	

			� EMBED Equation.2  ���,

			� EMBED Equation.2  ���,

			� EMBED Equation.2  ���.

		Comment: we expressed s in krad/sec, and the sampling frequency, in kHz. The functions of z are the same as when s is expressed in rad/sec and the sampling frequency in Hz.

	(b)	A notch tuned at 10 kHz is added to the response. The asymptotic Bode diagram for the loop gain is shown in Fig. P5.5, plot (b).

		Since the plot is rather complicated, the transfer function can be better obtained by a curve-fitting routine. Still, a reasonably good approximation to the desired transfer function can be obtained as a combination of a response with Bode step from 2.8 to 9 kHz shown by a dotted line, and a notch.

		The notch transfer function can be the ratio of two second order polynomials having roots with the same imaginary parts (2p (10 krad/sec)2 but different damping. To render the same noise rejection at the sampling frequency as in the case (a) in Fig. P5.6, let us choose the depth of the notch to be 20 dB, i.e. the ratio in the damping coefficients of 10. The values of the damping coefficients define the notch width. With the damping coefficient 0.12 of the poles and 0.012 of the zeros, the notch transfer function is

			� EMBED Equation.2  ���.

		The notch response found by

			n = [1 1.508 3950]; d = [1 15.08 3950];

			w = logspace (1, 2, 100); bode(n, d, w)

	is shown in Fig. P5.8. It looks acceptable: wide enough to reject the main components of the noise, and not overly broad thus not introducing excessive phase lag. (During a real practical design, different notches must be tried with the following noise rejection analysis.)

  �   �



		Fig. P5.8    Notch response, 		Fig. P5.9   Loop response with the notch 

		frequency in krad/sec

	

		The notch filter N(s) should be analog (or digital with much higher sampling rate), and it is placed at the input to the A/D converter, i.e. in the feedback path. This does not affect the closed loop response since at lower frequencies, the notch transfer function approaches 1.

			As mentioned, the loop response without the notch 

			� EMBED Equation.2  ���

	should be modified: the crossover frequency should be increased to 1.4 kHz ( i.e. to w = 8.8) by replacing s by s/1.4 in Ta; the complex poles frequency shifted to fc = 9 kHz, i.e. w = 56.6 to make the step wider. With all this done, the loop transfer function with this notch is � EMBED Equation.2  ���

	The modified response before adding the notch is plotted by:

			a = [1 3.135]; b = [1 14.07 309.5]; c = [1 1.508 3950];

			d = [1 0.880 0]; e = [1 17.6]; f = [1 45.26 3204];

			g = [1 15.08 3950];

			a4 = conv(a, 40000); ab = conv(a4, b); num = ab;

			de = conv(d, e); dee = conv(de, e); deef = conv(dee, f);

			den = deef;

			w = logspace(0, 2); bode(num, den, w)

	in Fig. P5.10.

		�



		Fig. P5.10   Loop response before adding the notch



		The response with the notch is plotted with:

			a = [1 3.135]; b = [1 14.07 309.5]; c = [1 1.508 3950];

			d = [1 0.880 0]; e = [1 17.6]; f = [1 45.26 3204];

			g = [1 15.08 3950];

			a4 = conv(a, 40000); ab = conv(a4, b); num = conv(ab, c);

			de = conv(d, e); dee = conv(de, e); deef = conv(dee, f);

			den = conv(deef, g);

			w = logspace(0,2); bode(num, den, w)

	and is shown in Fig. P5.9. With the digital lag added to this response, the response is basically as desired, although small adjustments should be made and the feedback bandwidth can be somewhat increased. We will not consider here the further iterations.

	     The compensator transfer function can be expressed as 

			� EMBED Equation.2  ���.

	     With w expressed in kilorad/sec and after rounding the coefficient values, the function can be factored as:

			� EMBED Equation.2  ���,  � EMBED Equation.2  ���,  � EMBED Equation.2  ���,

			� EMBED Equation.2  ���.

	    The compensator functions of z found with MATLAB command bilinear for fS = 6.28 kHz are:

			fs = 6.28; n = 4; d = [1 0.88 0];	[nd, dd] = bilinear(n, d, fs)

			n = [10 31.4]; d = [1 17.6]; [nd, dd] = bilinear(n, d, fs)

			n = 10; d = [1 17.6]; [nd, dd] = bilinear(n, d, fs)

			n = [100 1410 31000]; d = [1  45.3 2600]; [nd, dd] = bilinear(n, d, fs)

			� EMBED Equation.2  ���,  � EMBED Equation.2  ���, 

			� EMBED Equation.2  ���,  � EMBED Equation.2  ���.

24	The program is: (a) *	(b)	y = 0.0667 * r;

			r = x + 0.7778 * r;

			y += 0.0667 * r;		

25	Use MATLAB or SIMULINK

26	Use MATLAB or SIMULINK

27	The required accuracy range is 200/0.1 = 200, or 3.5 digits. This is the accuracy of a common inexpensive digital voltmeter. Better voltmeters have accuracy of 5, 6, and 7 digits. Thus, the summer can be analog. The resistors in the summer and prefilter need to have high accuracy, 0.01%. The resistors in the compensator can be less accurate, the accuracy of 0.1% or 1% is sufficient. The capacitor accuracy need not be very high since the capacitors do not affect static behavior, only the transients. Still, the capacitors’ accuracy must be not less than 5%, better, 2% or 1%. 

		Since the structural mode is collocated and the loop is analog, the mode can be phase-stabilized and doesn't limit the control bandwidth. Thus, control bandwidth can be 20 or 30 Hz. With such bandwidth, control accuracy will be higher by 20 dB (two octaves, with 10 dB/oct) and the disturbances will be additionally reduced 10 times. The chosen stability margins (30o, 10 dB) are quite sufficient, and the controller need not be tuned. If desired, the stability margins can be even increased for increased robustness and/or to allow larger capacitors’ tolerances, with somewhat lesser performance.

			With increased bandwidth, the capacitances in the analog circuitry in the compensator and prefilter will be small, and the size of the control board will not be bigger than that in the digital controller. The controller with the driver and the motor will constitute a self-contained structural block that can be tested separately from the main computer and its software. This simplifies the testing and troubleshooting.
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